De Novo Asymmetric Synthesis of Homoadenosine via a Palladium-Catalyzed N-Glycosylation

Sanjeeva R. Guppi, Maoquan Zhou, and George A. O'Doherty*

*Department of Chemistry, West Virginia Uni*V*ersity, Morgantown, West Virginia 26506*

*george.odoherty@mail.w*V*u.edu*

Received November 2, 2005

ABSTRACT

A highly stereoselective synthesis of L-2-deoxy-*â***-ribo-hexopyranosyl nucleosides from 6-chloropurine and Boc-protected pyranone has been developed. Our approach relies on the iterative application of a palladium-catalyzed N-glycosylation, diastereoselective reduction, and reductive 1,3-transposition. This strategy is amenable to prepare various natural and unnatural hexopyranosyl nucleosides analogues.**

The hexopyranosyl nucleosides make up a large and varied class of natural products (e.g., blasticidin,¹ gougerotin,² hikizimycin, 3 mildiomycin, 4 the bagougeramines, 5 SF-2140, 6 the pentopyranines,⁷ and miharamycin⁸). In addition to displaying intriguing structures, they also possess distinct biological activities.⁹ Inspired by these natural products, chemists have made two hexopyranosyl nucleosides 2-deoxy-

(1) Onuma, S.; N., Y.; Saito, Y. *Bull. Chem. Soc. Jpn*. **1966**, *39*, 1091. For its synthesis, see: Nomoto, S.; Shimoyama, A. *Tetrahedron Lett.* **2001**, *⁴²*, 1753-1755.

(2) (a) Fox, J. J.; Kuwada, Y.; Watanabe, K. A.; Ueda, T.; Whipple, E. B. *Antimicrob. Agents Chemother.* **¹⁹⁶⁴**, 518-529. (b) For its synthesis, see: Watanabe, K. A.; Falco, E. A.; Fox, J. J. *J. Am. Chem. Soc.* **1972**, *94*, ³²⁷²-3274.

(3) Ennifar, S.; Das, B. C.; Nash, S. M.; Nagarajan, R. *J. Chem. Soc., Chem. Commun.* **¹⁹⁷⁷**, 41-42. For its synthesis, see: (b) Ikemoto, N.; Schreiber, S. L. *J. Am. Chem. Soc.* **¹⁹⁹⁰**, *¹¹²*, 9657-9659. (c) Ikemoto, N.; Schreiber, S. L. *J. Am. Chem. Soc.* **¹⁹⁹²**, *¹¹⁴*, 2524-2536.

(4) Harada, S.; Mizuta, E.; Kishi, T. *J. Am. Chem. Soc.* **¹⁹⁷⁸**, *¹⁰⁰*, 4895- 4897.

(5) Takahashi, A.; Ikeda, D.; Naganawa, H.; Okami, Y.; Umezawa, H. *J. Antibiot.* **¹⁹⁸⁶**, *³⁹*, 1041-1046.

(6) (a) Ito, T.; Ohba, K.; Koyama, M.; Sezaki, M.; Tohyama, H.; Shomura, T.; Fukuyasu, H.; Kazuno, Y.; Niwa, T.; Kojima, M.; Niida, T. *J. Antibiot*. **¹⁹⁸⁴**, *³⁷*, 931-934. (b) For its synthesis, see: Buchanan, J. G.; Stoddart, J.; Wightman, R. H. *J. Chem. Soc., Perkin Trans. 1* **1994**, *11*, ¹⁴¹⁷-1426.

(7) (a) Watanabe, K. A.; Matsuda, A.; Itoh, T. *Can. J. Chem.* **1981**, *59*, ⁴⁶⁸-472. (b) For its synthesis, see: Watanabe, K. A.; Matsuda, A.; Itoh, T. *Can. J. Chem.* **¹⁹⁸¹**, *⁵⁹*, 468-72.

(8) Seto, H.; Koyama, M.; Ogino, H.; Tsuruoka, T.; Inouye, S.; Otake, N. *Tetrahedron Lett.* **¹⁹⁸³**, *²⁴*, 1805-1808. (b) For synthetic efforts toward miharamycin, see: Czernecki, S.; Franco, S.; Horns, S.; Valery, J.-M. *Tetrahedron Lett.* **¹⁹⁹⁶**, *³⁷*, 4003-4006.

10.1021/ol052664p CCC: \$33.50 © 2006 American Chemical Society **Published on Web 12/14/2005**

 β -D-*ribo*-hexopyranose adenosine (1)¹⁰ and 2,3-dideoxy- β - D -*ribo*-hexopyranose adenosine (2) .¹¹ These homologous nucleosides of adenosine and deoxyadenosine possess obvious structural and configurational similarities to the corresponding ribofuranose adenosines **3** and **4** (Figure 1).

Figure 1. Adenosines and hexopyranosyl nucleosides.

Biological studies of these ring-expanded analogues (**1** and **2**) have led to the discovery of several pyrano-nucleotide analogues with both antitumor and antiviral activity. 10^{-12} The interest in analogues of **3** and **4** has also led to the development of many novel nucleoside structures with anticancer and/or antiviral activity.12

⁽⁹⁾ *Recent Ad*V*ances in Nucleosides: Chemistry and Chemotherapy*; Chu, C. K., Ed.; Elsevier Science: Amsterdam, 2002.

While there has been significant synthetic effort toward the synthesis of adenosine analogues, 9 we were interested in preparing pyrano-analogues of this class of compounds from an achiral starting material using enantioselective catalysis to set the asymmetry (de novo synthesis). In addition, we were interested in a synthesis that allows for the diastereoselective installation of the base at C-1. Our retrosynthetic analysis of **1** and **2** was particularly influenced by Trost's de novo synthesis of the nucleosides.¹³

As part of our efforts working toward the de novo synthesis of carbohydrates, we discovered a palladium-catalyzed glycosylation reaction that selectively converts 2-substituted 6-*tert*-butoxycarboxy-2*H*-pyran-3(6*H*)-ones into 2-substituted 6-alkoxy-2*H*-pyran-3(6*H*)-ones with complete retention of configuration.14 This methodology has been extended toward the preparation of several natural/unnatural mono-, di-, and trisaccharides.15 To test the breadth of this methodology, we set out to prepare various analogues of pyranose adenosines (**1** and **2**). To accomplish this goal, we needed to extend the palladium glycosylation reaction to nitrogen nucleophiles (e.g., benzimidazole and purines).16 Herein, we describe our successful efforts to prepare the homoadenosine analogues (*ent*)-**1** and (*ent*)-**2**. 17

We envisioned that both the homoadenosine **1** and the deoxyhomoadenosine **2** could be prepared from the *â*-pyranone **7**, which in turn could be prepared by a palladiumcatalyzed glycosylation of the β -Boc-pyranone **9** with chloropurine **8** (Scheme 1).18 A diastereoselective reduction

of **7** should provide **6**, which could be converted into **2** by olefin reduction and replacement of the chlorine with ammonia. We imagined that the routes would diverge at allylic alcohol **6**. A Myers' reductive 1,3-transposition of allylic alcohol **6** should provide alkene **5**, ¹⁹ which should be converted into homoadenosine **1** via a diastereoselective dihydroxylation followed by amination.

To test the strategy, we carried out a model study using benzimidazole **10** and pyranone **11**. The Pd-catalyzed *N*glycosylation of benzimidazole **10** and pyranone **11** successfully gave the desired glycosylated pyranone 12α and 12β in good yield with complete stereocontrol (Scheme 2).

Our initial attempts at post-glycosylation modification of these *N*-glycosides with the α -anomers were not encouraging. The pyranone 12α was readily reduced to give the C-4 allylic alcohol 13α . This reduction, however, occurred with less stereocontrol at C-4 (4:1) as compared to N a BH ₄ reductions of pyranones with C-1 α -oxygen substituents.²⁰ The postglycosylation chemistry for these *N*-glycosides diverged with the *O*-glycosides during our attempts to modify the double bond of pyran 13α . To our surprise, all attempts to either dihydroxylate or reduce 13α were unsuccessful (Scheme 3).

(12) (a) Leutzinger, E. E.; Meguro, T.; Townsend, L. B.; Shuman, D. A.; Schweizer, M. P.; Stewart, C. M.; Robins, R. K. *J. Org. Chem*. **1972**, *³⁷*, 3695-3703. (b) Boehringer, M.; Roth, H. J.; Hunziker, J.; Goebel, M.; Krishnan, R.; Giger, A.; Schweizer, B.; Schreiber, J.; Leumann, C.; Eschenmoser, A. *Hel*V*. Chim. Acta* **¹⁹⁹²**, *⁷⁵*, 1416-1477.

(13) (a) Trost, B. M.; Shi, Z. *^J*. *Am*. *Chem*. *Soc*. **¹⁹⁹⁶**, *¹¹⁸*, 3037-3038. (b) For carbacyclic analogues, see: Trost, B. M.; Madsen, R.; Guile, S. D.; Elia, A. E. H. *Angew*. *Chem*., *Int*. *Ed*. *Engl*. **¹⁹⁹⁶**, *³⁵*, 1569-1572. (c) Trost, B. M.; Madsen, R.; Guile, S. D. *Tetrahedron Lett*. **¹⁹⁹⁷**, *³⁸*, 1707-1710. (14) Babu, R. S.; O'Doherty, G. A. *J. Am. Chem. Soc.* **²⁰⁰³**, *¹²⁵*, 12406-

12407. (15) (a) Babu, R. S.; Zhou, M.; O'Doherty, G. A. *J. Am. Chem. Soc.* **²⁰⁰⁴**, *¹²⁶*, 3428-3429. (b) Guo, H.; O'Doherty, G. A. *Org. Lett.* **²⁰⁰⁵**, *⁷*, ³⁹²¹-3924. (c) Babu, R. S.; O'Doherty, G. A. *J. Carbohydr. Chem.* **²⁰⁰⁵**, *²⁴*, 169-177.

(16) For the Pd-catalyzed *N*-glycosylation of indolocarboazoles, see: Trost, B. M.; Krische, M. J.; Berl, V.; Grenzer, E. M. *Org. Lett.* **2002**, *4*,

²⁰⁰⁵-2008. (17) While our approach has the flexibility to prepare either D- or L-pyranonosides, we targeted the L-enantiopodes of both **1** and **2** (i.e., **(***ent***)-1** and **(***ent***)-2**), because of our interest in comparing the antitumor activity of **(***ent***)-1** to **1**.

(18) Pyranones such as **9** can be prepared in three steps from acylfuran **25**. Not only can **9** be easily prepared in either enantiomeric form (D/L) but also in its α - or β -configuration, see: ref 15c and Li, M.; Scott, J. G.;

^{(19) (}a) Myers, A. G.; Zheng, B. *J. Am. Chem. Soc.* **¹⁹⁹⁶**, *¹¹⁸*, 4492- 4493. (b) Myers, A. G.; Zheng, B. *Tetrahedron Lett.* **¹⁹⁹⁶**, *³⁷*, 4841- 4844. (c) Myers, A. G.; Zheng, B.; Movassaghi, M. *J. Org. Chem*. **1997**, *62*, 7507.

^{(10) (}a) Nord, L. D.; Dalley, N. K.; McKernan, P. A.; Robins, R. K. *J. Med. Chem.* **¹⁹⁸⁷**, *³⁰*, 1044-54. (b) Zorbach, W. W.; Saeki, S. *J. Org. Chem*. **¹⁹⁶⁴**, *²⁹*, 2018-2019.

⁽¹¹⁾ For the synthesis of **2**, see ref 12 and: Groebke, K.; Hunziker, J.; Fraser, W.; Peng, L.; Diederichsen, U.; Zimmermann, K.; Holzner, A.; Leumann, C.; Eschenmoser, A. *Hel*V*. Chim. Acta* **¹⁹⁹⁸**, *⁸¹*, 375-474.

To our relief, our difficulties with the α -anomer did not occur with the β -isomers (Schemes 4-7). Reduction of the

pyranone 12β using NaBH₄ at -78 °C gave exclusively allylic alcohol 13β ²¹ Subjecting alcohol 13β to Myers' reductive 1,3-transposition condition (NBSH, PPh₃/DEAD, NMM, -30 °C to rt) provided the rearranged olefin 14 in good yield (65%). Dihydroxylation of **14** using the Upjohn conditions (OsO4/NMO) gave the diol **15** in 85% yield. In contrast to the oxidation chemistry, 13β could also be reduced, although not in high yield. Thus, exposing 13β to excess diimide precursor (NBSH/Et₃N) gave the 2.3 dideoxypyranose **16** in low yield (30%) but with good recovery of starting material (50%). While the yield of **16** was low, this procedure was superior to traditional hydrogenation $(H_2, 5\% \text{ Pd/C}$ in MeOH), which occurred with complete hydrogenolysis of the C-1 benzimidazole.

These successful model studies inspired us to synthesize the adenosine analogues.17 Our synthesis commenced with the coupling of Boc protected pyranone 11β and commercial available 6-chloropurine **8**. The pyranone 11β was easily prepared in only two steps from furfural alcohol. $14,15$ Thus, Pd-catalyzed coupling of 11β and 8 gave exclusively the 6-chloropurine glycosylated pyranone **17** in 86% yield (Scheme 5). Diastereoselective reduction of enone **17** with

NaBH₄ at -78 °C provided the allylic alcohol **18** in 83% yield. The stereochemistry of the alcohol was assigned by analysis of coupling constants (e.g., $J_{H4-H5} = 7.8 \text{ Hz}$).

With this advanced intermediate **18** in hand, efforts were taken to reductively rearrange the allylic alcohol into olefin **19**. Exposing allylic alcohol **18** to the Myers' reductive rearrangement conditions (NBSH, PPh₃/DEAD, NMM, -30 °C to rt) provided olefin **19** in 51% yield (Scheme 6).

Dihydroxylation of the olefin **19** under Upjohn conditions (OsO4/NMO) exclusively gave the diol product **20** (95%), which when exposed to ammonia in methanol (room temperature for 48 h) gave amine **21** in 77% yield. Finally, the silyl ether was deprotected with TBAF to give the desired 2-deoxy- β -L-*ribo*-hexopyranose (*ent*)-1 (94%).

Commencing with the same advance intermediate **18**, another adenosine analogue homo-2′-deoxyadenosine **(***ent***)-2**

⁽²⁰⁾ The differences in the stability and post-glycosylation modification in the α - and β -benzimidazole glycosides as well as the comparison to the *O*-glycosides are not without precedent. Similar phenomena for anomeric imidazoles have been described as a reverse anomeric effect; see: (a) Randell, K. D.; Johnston, B. D.; Green, D. F. and Pinto, B. M. *J. Org. Chem.* **²⁰⁰⁰**, *⁶⁵*, 220-226. (b) Vaino, A. R.; Szarek, W. A. *J. Org. Chem.* **²⁰⁰¹**, *⁶⁶*, 1097-1102.

⁽²¹⁾ This came to us as a surprise because previously we have found that the NaBH₄ reduction of 6-alkoxy- β -pyran-2-ones produces a mixture of diastereomers; see: Zhou, M.; O'Doherty, G. A. Unpublished results.

was also synthesized (Scheme 7). The allylic alcohol **18** was exposed to the diimide reduction conditions (NBSH, $Et₃N$) giving the desired reduced alcohol in very low yield. We envisioned that the 6-chloro group in the purine ring may be a problem and decided to carry out the amination first. Thus, the allylic alcohol **18** was treated with NH3/MeOH to afford the amine **22** in 81% yield. The diimide reduction of olefin **22** gave the reduced product **23** (35%, with 55%

recovered starting material). Finally, TBS-deprotection with TBAF provided the 2,3-dideoxy-*â*-L-*ribo*-hexopyranose **(***ent***)-2** in good yield (98%). By switching the reaction sequence (TBAF then diimide), a slightly higher yielding approach to **(***ent***)-2** was achieved (39% for the two steps).

In summary, a highly enantio- and diastereoselective procedure for the preparation of hexopyranose adenosine analogues has been developed. The 2-deoxy-*â*-L-*ribo*-hexopyranose **(***ent***)-1** was synthesized only in six steps and 2,3 dideoxy- β -L-*ribo*-hexopyranose (*ent*)-2 was prepared in five steps from Boc-protected pyranone (nine and eight steps from an achiral acylfuran, respectively). In addition to being the first synthesis of the L-sugar forms of **1** and **2**, this synthesis is the first to diastereoselectively install the purine base at the anomeric center.¹⁰⁻¹² The synthesis of other potential analogues and evaluation of the biological activity of these compounds are ongoing.

Acknowledgment. We are grateful to NIH (GM63150) and NSF (CHE-0415469) for the support of our research program and NSF-EPSCoR (0314742) for a 600 MHz NMR at WVU.

Supporting Information Available: Complete experimental procedures and spectral data for all new compounds. This material is available free of charge via the Internet at http://pubs.acs.org.

OL052664P